library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) D_07927 <- sunrise.set(50.41497177461547,11.771507263183593, "2024/01/01", timezone="MET", num.days=370) sunrise <- D_07927$sunrise sunset <- D_07927$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") D_07927["sr"] <- as.POSIXct(sunrise, format = "%H:%M") D_07927["ss"] <- as.POSIXct(sunset, format = "%H:%M") D_07927["timestamp"] <- align.time(D_07927$sunrise, 60*10) D_07927 <- D_07927[c("timestamp", "sr", "ss")] locsrss <- ggplot(D_07927, aes(x=D_07927$timestamp)) + geom_line(aes(y=D_07927$sr)) + geom_line(aes(y=D_07927$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - D_07927 2024", x = "Datum", y = "Zeit") pdf("D_07927_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="D_07927_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() D_07927["Sonnenaufgang"] <- strftime(D_07927$sr, format="%H:%M") D_07927["Sonnenuntergang"] <- strftime(D_07927$ss, format="%H:%M") write.table(D_07927, file="D_07927_SaSu.csv", dec=',', sep=';', row.names=FALSE)