library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Clenze <- sunrise.set(52.9357195,10.954878, "2023/01/01", timezone="MET", num.days=370) sunrise <- Clenze$sunrise sunset <- Clenze$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Clenze["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Clenze["ss"] <- as.POSIXct(sunset, format = "%H:%M") Clenze["timestamp"] <- align.time(Clenze$sunrise, 60*10) Clenze <- Clenze[c("timestamp", "sr", "ss")] locsrss <- ggplot(Clenze, aes(x=Clenze$timestamp)) + geom_line(aes(y=Clenze$sr)) + geom_line(aes(y=Clenze$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Clenze 2023", x = "Datum", y = "Zeit") pdf("Clenze_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Clenze_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Clenze["Sonnenaufgang"] <- strftime(Clenze$sr, format="%H:%M") Clenze["Sonnenuntergang"] <- strftime(Clenze$ss, format="%H:%M") write.table(Clenze, file="Clenze_SaSu.csv", dec=',', sep=';', row.names=FALSE)