library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Chiemsee <- sunrise.set(47.8709042,12.453737499999988, "2023/01/01", timezone="MET", num.days=370) sunrise <- Chiemsee$sunrise sunset <- Chiemsee$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Chiemsee["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Chiemsee["ss"] <- as.POSIXct(sunset, format = "%H:%M") Chiemsee["timestamp"] <- align.time(Chiemsee$sunrise, 60*10) Chiemsee <- Chiemsee[c("timestamp", "sr", "ss")] locsrss <- ggplot(Chiemsee, aes(x=Chiemsee$timestamp)) + geom_line(aes(y=Chiemsee$sr)) + geom_line(aes(y=Chiemsee$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Chiemsee 2023", x = "Datum", y = "Zeit") pdf("Chiemsee_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Chiemsee_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Chiemsee["Sonnenaufgang"] <- strftime(Chiemsee$sr, format="%H:%M") Chiemsee["Sonnenuntergang"] <- strftime(Chiemsee$ss, format="%H:%M") write.table(Chiemsee, file="Chiemsee_SaSu.csv", dec=',', sep=';', row.names=FALSE)