library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Ch_6370 <- sunrise.set(46.95191089999999,8.374485199999981, "2023/01/01", timezone="MET", num.days=370) sunrise <- Ch_6370$sunrise sunset <- Ch_6370$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Ch_6370["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Ch_6370["ss"] <- as.POSIXct(sunset, format = "%H:%M") Ch_6370["timestamp"] <- align.time(Ch_6370$sunrise, 60*10) Ch_6370 <- Ch_6370[c("timestamp", "sr", "ss")] locsrss <- ggplot(Ch_6370, aes(x=Ch_6370$timestamp)) + geom_line(aes(y=Ch_6370$sr)) + geom_line(aes(y=Ch_6370$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Ch_6370 2023", x = "Datum", y = "Zeit") pdf("Ch_6370_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Ch_6370_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Ch_6370["Sonnenaufgang"] <- strftime(Ch_6370$sr, format="%H:%M") Ch_6370["Sonnenuntergang"] <- strftime(Ch_6370$ss, format="%H:%M") write.table(Ch_6370, file="Ch_6370_SaSu.csv", dec=',', sep=';', row.names=FALSE)