library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Calgary <- sunrise.set(51.0453246,-114.0581012, "2023/01/01", timezone="MET", num.days=370) sunrise <- Calgary$sunrise sunset <- Calgary$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Calgary["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Calgary["ss"] <- as.POSIXct(sunset, format = "%H:%M") Calgary["timestamp"] <- align.time(Calgary$sunrise, 60*10) Calgary <- Calgary[c("timestamp", "sr", "ss")] locsrss <- ggplot(Calgary, aes(x=Calgary$timestamp)) + geom_line(aes(y=Calgary$sr)) + geom_line(aes(y=Calgary$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Calgary 2023", x = "Datum", y = "Zeit") pdf("Calgary_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Calgary_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Calgary["Sonnenaufgang"] <- strftime(Calgary$sr, format="%H:%M") Calgary["Sonnenuntergang"] <- strftime(Calgary$ss, format="%H:%M") write.table(Calgary, file="Calgary_SaSu.csv", dec=',', sep=';', row.names=FALSE)