library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Cala_Radjada <- sunrise.set(39.7100398,3.4566910999999436, "2023/01/01", timezone="MET", num.days=370) sunrise <- Cala_Radjada$sunrise sunset <- Cala_Radjada$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Cala_Radjada["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Cala_Radjada["ss"] <- as.POSIXct(sunset, format = "%H:%M") Cala_Radjada["timestamp"] <- align.time(Cala_Radjada$sunrise, 60*10) Cala_Radjada <- Cala_Radjada[c("timestamp", "sr", "ss")] locsrss <- ggplot(Cala_Radjada, aes(x=Cala_Radjada$timestamp)) + geom_line(aes(y=Cala_Radjada$sr)) + geom_line(aes(y=Cala_Radjada$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Cala_Radjada 2023", x = "Datum", y = "Zeit") pdf("Cala_Radjada_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Cala_Radjada_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Cala_Radjada["Sonnenaufgang"] <- strftime(Cala_Radjada$sr, format="%H:%M") Cala_Radjada["Sonnenuntergang"] <- strftime(Cala_Radjada$ss, format="%H:%M") write.table(Cala_Radjada, file="Cala_Radjada_SaSu.csv", dec=',', sep=';', row.names=FALSE)