library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Burladingen <- sunrise.set(48.2923433,9.1095899, "2023/01/01", timezone="MET", num.days=370) sunrise <- Burladingen$sunrise sunset <- Burladingen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Burladingen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Burladingen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Burladingen["timestamp"] <- align.time(Burladingen$sunrise, 60*10) Burladingen <- Burladingen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Burladingen, aes(x=Burladingen$timestamp)) + geom_line(aes(y=Burladingen$sr)) + geom_line(aes(y=Burladingen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Burladingen 2023", x = "Datum", y = "Zeit") pdf("Burladingen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Burladingen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Burladingen["Sonnenaufgang"] <- strftime(Burladingen$sr, format="%H:%M") Burladingen["Sonnenuntergang"] <- strftime(Burladingen$ss, format="%H:%M") write.table(Burladingen, file="Burladingen_SaSu.csv", dec=',', sep=';', row.names=FALSE)