library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Budjadingen <- sunrise.set(53.5770019,8.3674888, "2022/01/01", timezone="MET", num.days=370) sunrise <- Budjadingen$sunrise sunset <- Budjadingen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Budjadingen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Budjadingen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Budjadingen["timestamp"] <- align.time(Budjadingen$sunrise, 60*10) Budjadingen <- Budjadingen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Budjadingen, aes(x=Budjadingen$timestamp)) + geom_line(aes(y=Budjadingen$sr)) + geom_line(aes(y=Budjadingen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Budjadingen 2022", x = "Datum", y = "Zeit") pdf("Budjadingen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Budjadingen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Budjadingen["Sonnenaufgang"] <- strftime(Budjadingen$sr, format="%H:%M") Budjadingen["Sonnenuntergang"] <- strftime(Budjadingen$ss, format="%H:%M") write.table(Budjadingen, file="Budjadingen_SaSu.csv", dec=',', sep=';', row.names=FALSE)