library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Budenheim <- sunrise.set(50.0241889,8.1727507, "2023/01/01", timezone="MET", num.days=370) sunrise <- Budenheim$sunrise sunset <- Budenheim$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Budenheim["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Budenheim["ss"] <- as.POSIXct(sunset, format = "%H:%M") Budenheim["timestamp"] <- align.time(Budenheim$sunrise, 60*10) Budenheim <- Budenheim[c("timestamp", "sr", "ss")] locsrss <- ggplot(Budenheim, aes(x=Budenheim$timestamp)) + geom_line(aes(y=Budenheim$sr)) + geom_line(aes(y=Budenheim$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Budenheim 2023", x = "Datum", y = "Zeit") pdf("Budenheim_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Budenheim_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Budenheim["Sonnenaufgang"] <- strftime(Budenheim$sr, format="%H:%M") Budenheim["Sonnenuntergang"] <- strftime(Budenheim$ss, format="%H:%M") write.table(Budenheim, file="Budenheim_SaSu.csv", dec=',', sep=';', row.names=FALSE)