library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Brunsbek <- sunrise.set(53.59999999999999,10.266666699999973, "2023/01/01", timezone="MET", num.days=370) sunrise <- Brunsbek$sunrise sunset <- Brunsbek$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Brunsbek["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Brunsbek["ss"] <- as.POSIXct(sunset, format = "%H:%M") Brunsbek["timestamp"] <- align.time(Brunsbek$sunrise, 60*10) Brunsbek <- Brunsbek[c("timestamp", "sr", "ss")] locsrss <- ggplot(Brunsbek, aes(x=Brunsbek$timestamp)) + geom_line(aes(y=Brunsbek$sr)) + geom_line(aes(y=Brunsbek$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Brunsbek 2023", x = "Datum", y = "Zeit") pdf("Brunsbek_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Brunsbek_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Brunsbek["Sonnenaufgang"] <- strftime(Brunsbek$sr, format="%H:%M") Brunsbek["Sonnenuntergang"] <- strftime(Brunsbek$ss, format="%H:%M") write.table(Brunsbek, file="Brunsbek_SaSu.csv", dec=',', sep=';', row.names=FALSE)