library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bremerv��rde <- sunrise.set(53.4871321,9.139978499999984, "2023/01/01", timezone="MET", num.days=370) sunrise <- Bremerv��rde$sunrise sunset <- Bremerv��rde$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bremerv��rde["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bremerv��rde["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bremerv��rde["timestamp"] <- align.time(Bremerv��rde$sunrise, 60*10) Bremerv��rde <- Bremerv��rde[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bremerv��rde, aes(x=Bremerv��rde$timestamp)) + geom_line(aes(y=Bremerv��rde$sr)) + geom_line(aes(y=Bremerv��rde$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Bremerv��rde 2023", x = "Datum", y = "Zeit") pdf("Bremerv��rde_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bremerv��rde_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bremerv��rde["Sonnenaufgang"] <- strftime(Bremerv��rde$sr, format="%H:%M") Bremerv��rde["Sonnenuntergang"] <- strftime(Bremerv��rde$ss, format="%H:%M") write.table(Bremerv��rde, file="Bremerv��rde_SaSu.csv", dec=',', sep=';', row.names=FALSE)