library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bramsche <- sunrise.set(52.41638826718971,7.9794524154342525, "2023/01/01", timezone="MET", num.days=370) sunrise <- Bramsche$sunrise sunset <- Bramsche$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bramsche["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bramsche["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bramsche["timestamp"] <- align.time(Bramsche$sunrise, 60*10) Bramsche <- Bramsche[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bramsche, aes(x=Bramsche$timestamp)) + geom_line(aes(y=Bramsche$sr)) + geom_line(aes(y=Bramsche$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Bramsche 2023", x = "Datum", y = "Zeit") pdf("Bramsche_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bramsche_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bramsche["Sonnenaufgang"] <- strftime(Bramsche$sr, format="%H:%M") Bramsche["Sonnenuntergang"] <- strftime(Bramsche$ss, format="%H:%M") write.table(Bramsche, file="Bramsche_SaSu.csv", dec=',', sep=';', row.names=FALSE)