library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Br��ggen <- sunrise.set(51.2442461,6.1818561000000045, "2023/01/01", timezone="MET", num.days=370) sunrise <- Br��ggen$sunrise sunset <- Br��ggen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Br��ggen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Br��ggen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Br��ggen["timestamp"] <- align.time(Br��ggen$sunrise, 60*10) Br��ggen <- Br��ggen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Br��ggen, aes(x=Br��ggen$timestamp)) + geom_line(aes(y=Br��ggen$sr)) + geom_line(aes(y=Br��ggen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Br��ggen 2023", x = "Datum", y = "Zeit") pdf("Br��ggen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Br��ggen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Br��ggen["Sonnenaufgang"] <- strftime(Br��ggen$sr, format="%H:%M") Br��ggen["Sonnenuntergang"] <- strftime(Br��ggen$ss, format="%H:%M") write.table(Br��ggen, file="Br��ggen_SaSu.csv", dec=',', sep=';', row.names=FALSE)