library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Br��ckau <- sunrise.set(50.9621914,12.2117231, "2023/01/01", timezone="MET", num.days=370) sunrise <- Br��ckau$sunrise sunset <- Br��ckau$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Br��ckau["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Br��ckau["ss"] <- as.POSIXct(sunset, format = "%H:%M") Br��ckau["timestamp"] <- align.time(Br��ckau$sunrise, 60*10) Br��ckau <- Br��ckau[c("timestamp", "sr", "ss")] locsrss <- ggplot(Br��ckau, aes(x=Br��ckau$timestamp)) + geom_line(aes(y=Br��ckau$sr)) + geom_line(aes(y=Br��ckau$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Br��ckau 2023", x = "Datum", y = "Zeit") pdf("Br��ckau_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Br��ckau_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Br��ckau["Sonnenaufgang"] <- strftime(Br��ckau$sr, format="%H:%M") Br��ckau["Sonnenuntergang"] <- strftime(Br��ckau$ss, format="%H:%M") write.table(Br��ckau, file="Br��ckau_SaSu.csv", dec=',', sep=';', row.names=FALSE)