library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bozen <- sunrise.set(46.47,11.25, "2023/01/01", timezone="MET", num.days=370) sunrise <- Bozen$sunrise sunset <- Bozen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bozen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bozen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bozen["timestamp"] <- align.time(Bozen$sunrise, 60*10) Bozen <- Bozen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bozen, aes(x=Bozen$timestamp)) + geom_line(aes(y=Bozen$sr)) + geom_line(aes(y=Bozen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Bozen 2023", x = "Datum", y = "Zeit") pdf("Bozen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bozen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bozen["Sonnenaufgang"] <- strftime(Bozen$sr, format="%H:%M") Bozen["Sonnenuntergang"] <- strftime(Bozen$ss, format="%H:%M") write.table(Bozen, file="Bozen_SaSu.csv", dec=',', sep=';', row.names=FALSE)