library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bochum_langendreer <- sunrise.set(51.473081,7.325448, "2023/01/01", timezone="MET", num.days=370) sunrise <- Bochum_langendreer$sunrise sunset <- Bochum_langendreer$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bochum_langendreer["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bochum_langendreer["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bochum_langendreer["timestamp"] <- align.time(Bochum_langendreer$sunrise, 60*10) Bochum_langendreer <- Bochum_langendreer[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bochum_langendreer, aes(x=Bochum_langendreer$timestamp)) + geom_line(aes(y=Bochum_langendreer$sr)) + geom_line(aes(y=Bochum_langendreer$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Bochum_langendreer 2023", x = "Datum", y = "Zeit") pdf("Bochum_langendreer_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bochum_langendreer_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bochum_langendreer["Sonnenaufgang"] <- strftime(Bochum_langendreer$sr, format="%H:%M") Bochum_langendreer["Sonnenuntergang"] <- strftime(Bochum_langendreer$ss, format="%H:%M") write.table(Bochum_langendreer, file="Bochum_langendreer_SaSu.csv", dec=',', sep=';', row.names=FALSE)