library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Blankenheim <- sunrise.set(50.41462199999999,6.63403900000003, "2023/01/01", timezone="MET", num.days=370) sunrise <- Blankenheim$sunrise sunset <- Blankenheim$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Blankenheim["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Blankenheim["ss"] <- as.POSIXct(sunset, format = "%H:%M") Blankenheim["timestamp"] <- align.time(Blankenheim$sunrise, 60*10) Blankenheim <- Blankenheim[c("timestamp", "sr", "ss")] locsrss <- ggplot(Blankenheim, aes(x=Blankenheim$timestamp)) + geom_line(aes(y=Blankenheim$sr)) + geom_line(aes(y=Blankenheim$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Blankenheim 2023", x = "Datum", y = "Zeit") pdf("Blankenheim_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Blankenheim_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Blankenheim["Sonnenaufgang"] <- strftime(Blankenheim$sr, format="%H:%M") Blankenheim["Sonnenuntergang"] <- strftime(Blankenheim$ss, format="%H:%M") write.table(Blankenheim, file="Blankenheim_SaSu.csv", dec=',', sep=';', row.names=FALSE)