library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Binenwalde <- sunrise.set(53.0538642,12.7972244, "2023/01/01", timezone="MET", num.days=370) sunrise <- Binenwalde$sunrise sunset <- Binenwalde$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Binenwalde["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Binenwalde["ss"] <- as.POSIXct(sunset, format = "%H:%M") Binenwalde["timestamp"] <- align.time(Binenwalde$sunrise, 60*10) Binenwalde <- Binenwalde[c("timestamp", "sr", "ss")] locsrss <- ggplot(Binenwalde, aes(x=Binenwalde$timestamp)) + geom_line(aes(y=Binenwalde$sr)) + geom_line(aes(y=Binenwalde$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Binenwalde 2023", x = "Datum", y = "Zeit") pdf("Binenwalde_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Binenwalde_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Binenwalde["Sonnenaufgang"] <- strftime(Binenwalde$sr, format="%H:%M") Binenwalde["Sonnenuntergang"] <- strftime(Binenwalde$ss, format="%H:%M") write.table(Binenwalde, file="Binenwalde_SaSu.csv", dec=',', sep=';', row.names=FALSE)