library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Barnstorf <- sunrise.set(52.7064102,8.497608200000058, "2022/01/01", timezone="MET", num.days=370) sunrise <- Barnstorf$sunrise sunset <- Barnstorf$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Barnstorf["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Barnstorf["ss"] <- as.POSIXct(sunset, format = "%H:%M") Barnstorf["timestamp"] <- align.time(Barnstorf$sunrise, 60*10) Barnstorf <- Barnstorf[c("timestamp", "sr", "ss")] locsrss <- ggplot(Barnstorf, aes(x=Barnstorf$timestamp)) + geom_line(aes(y=Barnstorf$sr)) + geom_line(aes(y=Barnstorf$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Barnstorf 2022", x = "Datum", y = "Zeit") pdf("Barnstorf_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Barnstorf_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Barnstorf["Sonnenaufgang"] <- strftime(Barnstorf$sr, format="%H:%M") Barnstorf["Sonnenuntergang"] <- strftime(Barnstorf$ss, format="%H:%M") write.table(Barnstorf, file="Barnstorf_SaSu.csv", dec=',', sep=';', row.names=FALSE)