library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Barcelona <- sunrise.set(41.387917,2.169919, "2022/01/01", timezone="MET", num.days=370) sunrise <- Barcelona$sunrise sunset <- Barcelona$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Barcelona["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Barcelona["ss"] <- as.POSIXct(sunset, format = "%H:%M") Barcelona["timestamp"] <- align.time(Barcelona$sunrise, 60*10) Barcelona <- Barcelona[c("timestamp", "sr", "ss")] locsrss <- ggplot(Barcelona, aes(x=Barcelona$timestamp)) + geom_line(aes(y=Barcelona$sr)) + geom_line(aes(y=Barcelona$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Barcelona 2022", x = "Datum", y = "Zeit") pdf("Barcelona_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Barcelona_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Barcelona["Sonnenaufgang"] <- strftime(Barcelona$sr, format="%H:%M") Barcelona["Sonnenuntergang"] <- strftime(Barcelona$ss, format="%H:%M") write.table(Barcelona, file="Barcelona_SaSu.csv", dec=',', sep=';', row.names=FALSE)