library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bannewitz <- sunrise.set(50.99378129999999,13.718033300000002, "2023/01/01", timezone="MET", num.days=370) sunrise <- Bannewitz$sunrise sunset <- Bannewitz$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bannewitz["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bannewitz["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bannewitz["timestamp"] <- align.time(Bannewitz$sunrise, 60*10) Bannewitz <- Bannewitz[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bannewitz, aes(x=Bannewitz$timestamp)) + geom_line(aes(y=Bannewitz$sr)) + geom_line(aes(y=Bannewitz$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Bannewitz 2023", x = "Datum", y = "Zeit") pdf("Bannewitz_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bannewitz_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bannewitz["Sonnenaufgang"] <- strftime(Bannewitz$sr, format="%H:%M") Bannewitz["Sonnenuntergang"] <- strftime(Bannewitz$ss, format="%H:%M") write.table(Bannewitz, file="Bannewitz_SaSu.csv", dec=',', sep=';', row.names=FALSE)