library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Baesweiler <- sunrise.set(50.90633649999999,6.18253279999999, "2023/01/01", timezone="MET", num.days=370) sunrise <- Baesweiler$sunrise sunset <- Baesweiler$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Baesweiler["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Baesweiler["ss"] <- as.POSIXct(sunset, format = "%H:%M") Baesweiler["timestamp"] <- align.time(Baesweiler$sunrise, 60*10) Baesweiler <- Baesweiler[c("timestamp", "sr", "ss")] locsrss <- ggplot(Baesweiler, aes(x=Baesweiler$timestamp)) + geom_line(aes(y=Baesweiler$sr)) + geom_line(aes(y=Baesweiler$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Baesweiler 2023", x = "Datum", y = "Zeit") pdf("Baesweiler_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Baesweiler_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Baesweiler["Sonnenaufgang"] <- strftime(Baesweiler$sr, format="%H:%M") Baesweiler["Sonnenuntergang"] <- strftime(Baesweiler$ss, format="%H:%M") write.table(Baesweiler, file="Baesweiler_SaSu.csv", dec=',', sep=';', row.names=FALSE)