library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bad_sobernheim <- sunrise.set(49.7857614,7.651549899999964, "2023/01/01", timezone="MET", num.days=370) sunrise <- Bad_sobernheim$sunrise sunset <- Bad_sobernheim$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bad_sobernheim["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bad_sobernheim["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bad_sobernheim["timestamp"] <- align.time(Bad_sobernheim$sunrise, 60*10) Bad_sobernheim <- Bad_sobernheim[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bad_sobernheim, aes(x=Bad_sobernheim$timestamp)) + geom_line(aes(y=Bad_sobernheim$sr)) + geom_line(aes(y=Bad_sobernheim$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Bad_sobernheim 2023", x = "Datum", y = "Zeit") pdf("Bad_sobernheim_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bad_sobernheim_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bad_sobernheim["Sonnenaufgang"] <- strftime(Bad_sobernheim$sr, format="%H:%M") Bad_sobernheim["Sonnenuntergang"] <- strftime(Bad_sobernheim$ss, format="%H:%M") write.table(Bad_sobernheim, file="Bad_sobernheim_SaSu.csv", dec=',', sep=';', row.names=FALSE)