library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Bad_saarow <- sunrise.set(52.2742962,14.0546568, "2023/01/01", timezone="MET", num.days=370) sunrise <- Bad_saarow$sunrise sunset <- Bad_saarow$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Bad_saarow["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Bad_saarow["ss"] <- as.POSIXct(sunset, format = "%H:%M") Bad_saarow["timestamp"] <- align.time(Bad_saarow$sunrise, 60*10) Bad_saarow <- Bad_saarow[c("timestamp", "sr", "ss")] locsrss <- ggplot(Bad_saarow, aes(x=Bad_saarow$timestamp)) + geom_line(aes(y=Bad_saarow$sr)) + geom_line(aes(y=Bad_saarow$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Bad_saarow 2023", x = "Datum", y = "Zeit") pdf("Bad_saarow_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Bad_saarow_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Bad_saarow["Sonnenaufgang"] <- strftime(Bad_saarow$sr, format="%H:%M") Bad_saarow["Sonnenuntergang"] <- strftime(Bad_saarow$ss, format="%H:%M") write.table(Bad_saarow, file="Bad_saarow_SaSu.csv", dec=',', sep=';', row.names=FALSE)