library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) B��dingen <- sunrise.set(50.2953031926079,9.032655600994872, "2023/01/01", timezone="MET", num.days=370) sunrise <- B��dingen$sunrise sunset <- B��dingen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") B��dingen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") B��dingen["ss"] <- as.POSIXct(sunset, format = "%H:%M") B��dingen["timestamp"] <- align.time(B��dingen$sunrise, 60*10) B��dingen <- B��dingen[c("timestamp", "sr", "ss")] locsrss <- ggplot(B��dingen, aes(x=B��dingen$timestamp)) + geom_line(aes(y=B��dingen$sr)) + geom_line(aes(y=B��dingen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - B��dingen 2023", x = "Datum", y = "Zeit") pdf("B��dingen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="B��dingen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() B��dingen["Sonnenaufgang"] <- strftime(B��dingen$sr, format="%H:%M") B��dingen["Sonnenuntergang"] <- strftime(B��dingen$ss, format="%H:%M") write.table(B��dingen, file="B��dingen_SaSu.csv", dec=',', sep=';', row.names=FALSE)