library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Appenzell <- sunrise.set(47.3308044,9.408706299999949, "2023/01/01", timezone="MET", num.days=370) sunrise <- Appenzell$sunrise sunset <- Appenzell$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Appenzell["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Appenzell["ss"] <- as.POSIXct(sunset, format = "%H:%M") Appenzell["timestamp"] <- align.time(Appenzell$sunrise, 60*10) Appenzell <- Appenzell[c("timestamp", "sr", "ss")] locsrss <- ggplot(Appenzell, aes(x=Appenzell$timestamp)) + geom_line(aes(y=Appenzell$sr)) + geom_line(aes(y=Appenzell$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Appenzell 2023", x = "Datum", y = "Zeit") pdf("Appenzell_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Appenzell_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Appenzell["Sonnenaufgang"] <- strftime(Appenzell$sr, format="%H:%M") Appenzell["Sonnenuntergang"] <- strftime(Appenzell$ss, format="%H:%M") write.table(Appenzell, file="Appenzell_SaSu.csv", dec=',', sep=';', row.names=FALSE)