library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Ansbach <- sunrise.set(49.3004246,10.57193570000004, "2023/01/01", timezone="MET", num.days=370) sunrise <- Ansbach$sunrise sunset <- Ansbach$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Ansbach["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Ansbach["ss"] <- as.POSIXct(sunset, format = "%H:%M") Ansbach["timestamp"] <- align.time(Ansbach$sunrise, 60*10) Ansbach <- Ansbach[c("timestamp", "sr", "ss")] locsrss <- ggplot(Ansbach, aes(x=Ansbach$timestamp)) + geom_line(aes(y=Ansbach$sr)) + geom_line(aes(y=Ansbach$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Ansbach 2023", x = "Datum", y = "Zeit") pdf("Ansbach_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Ansbach_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Ansbach["Sonnenaufgang"] <- strftime(Ansbach$sr, format="%H:%M") Ansbach["Sonnenuntergang"] <- strftime(Ansbach$ss, format="%H:%M") write.table(Ansbach, file="Ansbach_SaSu.csv", dec=',', sep=';', row.names=FALSE)