library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Amsterdam <- sunrise.set(52.3702157,4.895167899999933, "2024/01/01", timezone="MET", num.days=370) sunrise <- Amsterdam$sunrise sunset <- Amsterdam$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Amsterdam["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Amsterdam["ss"] <- as.POSIXct(sunset, format = "%H:%M") Amsterdam["timestamp"] <- align.time(Amsterdam$sunrise, 60*10) Amsterdam <- Amsterdam[c("timestamp", "sr", "ss")] locsrss <- ggplot(Amsterdam, aes(x=Amsterdam$timestamp)) + geom_line(aes(y=Amsterdam$sr)) + geom_line(aes(y=Amsterdam$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Amsterdam 2024", x = "Datum", y = "Zeit") pdf("Amsterdam_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Amsterdam_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Amsterdam["Sonnenaufgang"] <- strftime(Amsterdam$sr, format="%H:%M") Amsterdam["Sonnenuntergang"] <- strftime(Amsterdam$ss, format="%H:%M") write.table(Amsterdam, file="Amsterdam_SaSu.csv", dec=',', sep=';', row.names=FALSE)