library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Altenstadt <- sunrise.set(50.2877277,8.9434385, "2023/01/01", timezone="MET", num.days=370) sunrise <- Altenstadt$sunrise sunset <- Altenstadt$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Altenstadt["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Altenstadt["ss"] <- as.POSIXct(sunset, format = "%H:%M") Altenstadt["timestamp"] <- align.time(Altenstadt$sunrise, 60*10) Altenstadt <- Altenstadt[c("timestamp", "sr", "ss")] locsrss <- ggplot(Altenstadt, aes(x=Altenstadt$timestamp)) + geom_line(aes(y=Altenstadt$sr)) + geom_line(aes(y=Altenstadt$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Altenstadt 2023", x = "Datum", y = "Zeit") pdf("Altenstadt_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Altenstadt_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Altenstadt["Sonnenaufgang"] <- strftime(Altenstadt$sr, format="%H:%M") Altenstadt["Sonnenuntergang"] <- strftime(Altenstadt$ss, format="%H:%M") write.table(Altenstadt, file="Altenstadt_SaSu.csv", dec=',', sep=';', row.names=FALSE)