library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Altenberge <- sunrise.set(52.0468114,7.46993150000003, "2023/01/01", timezone="MET", num.days=370) sunrise <- Altenberge$sunrise sunset <- Altenberge$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Altenberge["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Altenberge["ss"] <- as.POSIXct(sunset, format = "%H:%M") Altenberge["timestamp"] <- align.time(Altenberge$sunrise, 60*10) Altenberge <- Altenberge[c("timestamp", "sr", "ss")] locsrss <- ggplot(Altenberge, aes(x=Altenberge$timestamp)) + geom_line(aes(y=Altenberge$sr)) + geom_line(aes(y=Altenberge$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Altenberge 2023", x = "Datum", y = "Zeit") pdf("Altenberge_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Altenberge_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Altenberge["Sonnenaufgang"] <- strftime(Altenberge$sr, format="%H:%M") Altenberge["Sonnenuntergang"] <- strftime(Altenberge$ss, format="%H:%M") write.table(Altenberge, file="Altenberge_SaSu.csv", dec=',', sep=';', row.names=FALSE)