library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Alert_Kanada <- sunrise.set(82.516305,-62.308482, "2023/01/01", timezone="MET", num.days=370) sunrise <- Alert_Kanada$sunrise sunset <- Alert_Kanada$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Alert_Kanada["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Alert_Kanada["ss"] <- as.POSIXct(sunset, format = "%H:%M") Alert_Kanada["timestamp"] <- align.time(Alert_Kanada$sunrise, 60*10) Alert_Kanada <- Alert_Kanada[c("timestamp", "sr", "ss")] locsrss <- ggplot(Alert_Kanada, aes(x=Alert_Kanada$timestamp)) + geom_line(aes(y=Alert_Kanada$sr)) + geom_line(aes(y=Alert_Kanada$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Alert_Kanada 2023", x = "Datum", y = "Zeit") pdf("Alert_Kanada_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Alert_Kanada_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Alert_Kanada["Sonnenaufgang"] <- strftime(Alert_Kanada$sr, format="%H:%M") Alert_Kanada["Sonnenuntergang"] <- strftime(Alert_Kanada$ss, format="%H:%M") write.table(Alert_Kanada, file="Alert_Kanada_SaSu.csv", dec=',', sep=';', row.names=FALSE)