library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Ahlen <- sunrise.set(51.76868973964185,7.8792572021484375, "2023/01/01", timezone="MET", num.days=370) sunrise <- Ahlen$sunrise sunset <- Ahlen$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Ahlen["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Ahlen["ss"] <- as.POSIXct(sunset, format = "%H:%M") Ahlen["timestamp"] <- align.time(Ahlen$sunrise, 60*10) Ahlen <- Ahlen[c("timestamp", "sr", "ss")] locsrss <- ggplot(Ahlen, aes(x=Ahlen$timestamp)) + geom_line(aes(y=Ahlen$sr)) + geom_line(aes(y=Ahlen$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Ahlen 2023", x = "Datum", y = "Zeit") pdf("Ahlen_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Ahlen_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Ahlen["Sonnenaufgang"] <- strftime(Ahlen$sr, format="%H:%M") Ahlen["Sonnenuntergang"] <- strftime(Ahlen$ss, format="%H:%M") write.table(Ahlen, file="Ahlen_SaSu.csv", dec=',', sep=';', row.names=FALSE)