library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) Achtel <- sunrise.set(49.5724213,11.5826169, "2023/01/01", timezone="MET", num.days=370) sunrise <- Achtel$sunrise sunset <- Achtel$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") Achtel["sr"] <- as.POSIXct(sunrise, format = "%H:%M") Achtel["ss"] <- as.POSIXct(sunset, format = "%H:%M") Achtel["timestamp"] <- align.time(Achtel$sunrise, 60*10) Achtel <- Achtel[c("timestamp", "sr", "ss")] locsrss <- ggplot(Achtel, aes(x=Achtel$timestamp)) + geom_line(aes(y=Achtel$sr)) + geom_line(aes(y=Achtel$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - Achtel 2023", x = "Datum", y = "Zeit") pdf("Achtel_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="Achtel_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() Achtel["Sonnenaufgang"] <- strftime(Achtel$sr, format="%H:%M") Achtel["Sonnenuntergang"] <- strftime(Achtel$ss, format="%H:%M") write.table(Achtel, file="Achtel_SaSu.csv", dec=',', sep=';', row.names=FALSE)