library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) AT_8740 <- sunrise.set(47.188946,14.7513432, "2024/01/01", timezone="MET", num.days=370) sunrise <- AT_8740$sunrise sunset <- AT_8740$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") AT_8740["sr"] <- as.POSIXct(sunrise, format = "%H:%M") AT_8740["ss"] <- as.POSIXct(sunset, format = "%H:%M") AT_8740["timestamp"] <- align.time(AT_8740$sunrise, 60*10) AT_8740 <- AT_8740[c("timestamp", "sr", "ss")] locsrss <- ggplot(AT_8740, aes(x=AT_8740$timestamp)) + geom_line(aes(y=AT_8740$sr)) + geom_line(aes(y=AT_8740$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - AT_8740 2024", x = "Datum", y = "Zeit") pdf("AT_8740_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="AT_8740_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() AT_8740["Sonnenaufgang"] <- strftime(AT_8740$sr, format="%H:%M") AT_8740["Sonnenuntergang"] <- strftime(AT_8740$ss, format="%H:%M") write.table(AT_8740, file="AT_8740_SaSu.csv", dec=',', sep=';', row.names=FALSE)