library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) AT_8010 <- sunrise.set(47.06410015311188,15.466604232788086, "2023/01/01", timezone="MET", num.days=370) sunrise <- AT_8010$sunrise sunset <- AT_8010$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") AT_8010["sr"] <- as.POSIXct(sunrise, format = "%H:%M") AT_8010["ss"] <- as.POSIXct(sunset, format = "%H:%M") AT_8010["timestamp"] <- align.time(AT_8010$sunrise, 60*10) AT_8010 <- AT_8010[c("timestamp", "sr", "ss")] locsrss <- ggplot(AT_8010, aes(x=AT_8010$timestamp)) + geom_line(aes(y=AT_8010$sr)) + geom_line(aes(y=AT_8010$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - AT_8010 2023", x = "Datum", y = "Zeit") pdf("AT_8010_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="AT_8010_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() AT_8010["Sonnenaufgang"] <- strftime(AT_8010$sr, format="%H:%M") AT_8010["Sonnenuntergang"] <- strftime(AT_8010$ss, format="%H:%M") write.table(AT_8010, file="AT_8010_SaSu.csv", dec=',', sep=';', row.names=FALSE)