library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) AT_2540 <- sunrise.set(47.9654019,16.1642407, "2023/01/01", timezone="MET", num.days=370) sunrise <- AT_2540$sunrise sunset <- AT_2540$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") AT_2540["sr"] <- as.POSIXct(sunrise, format = "%H:%M") AT_2540["ss"] <- as.POSIXct(sunset, format = "%H:%M") AT_2540["timestamp"] <- align.time(AT_2540$sunrise, 60*10) AT_2540 <- AT_2540[c("timestamp", "sr", "ss")] locsrss <- ggplot(AT_2540, aes(x=AT_2540$timestamp)) + geom_line(aes(y=AT_2540$sr)) + geom_line(aes(y=AT_2540$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - AT_2540 2023", x = "Datum", y = "Zeit") pdf("AT_2540_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="AT_2540_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() AT_2540["Sonnenaufgang"] <- strftime(AT_2540$sr, format="%H:%M") AT_2540["Sonnenuntergang"] <- strftime(AT_2540$ss, format="%H:%M") write.table(AT_2540, file="AT_2540_SaSu.csv", dec=',', sep=';', row.names=FALSE)