library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) A_3484 <- sunrise.set(48.3793996681906,15.78409194946289, "2023/01/01", timezone="MET", num.days=370) sunrise <- A_3484$sunrise sunset <- A_3484$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") A_3484["sr"] <- as.POSIXct(sunrise, format = "%H:%M") A_3484["ss"] <- as.POSIXct(sunset, format = "%H:%M") A_3484["timestamp"] <- align.time(A_3484$sunrise, 60*10) A_3484 <- A_3484[c("timestamp", "sr", "ss")] locsrss <- ggplot(A_3484, aes(x=A_3484$timestamp)) + geom_line(aes(y=A_3484$sr)) + geom_line(aes(y=A_3484$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - A_3484 2023", x = "Datum", y = "Zeit") pdf("A_3484_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="A_3484_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() A_3484["Sonnenaufgang"] <- strftime(A_3484$sr, format="%H:%M") A_3484["Sonnenuntergang"] <- strftime(A_3484$ss, format="%H:%M") write.table(A_3484, file="A_3484_SaSu.csv", dec=',', sep=';', row.names=FALSE)