library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 94161 <- sunrise.set(48.6530947,13.4093064, "2024/01/01", timezone="MET", num.days=370) sunrise <- 94161$sunrise sunset <- 94161$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 94161["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 94161["ss"] <- as.POSIXct(sunset, format = "%H:%M") 94161["timestamp"] <- align.time(94161$sunrise, 60*10) 94161 <- 94161[c("timestamp", "sr", "ss")] locsrss <- ggplot(94161, aes(x=94161$timestamp)) + geom_line(aes(y=94161$sr)) + geom_line(aes(y=94161$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 94161 2024", x = "Datum", y = "Zeit") pdf("94161_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="94161_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 94161["Sonnenaufgang"] <- strftime(94161$sr, format="%H:%M") 94161["Sonnenuntergang"] <- strftime(94161$ss, format="%H:%M") write.table(94161, file="94161_SaSu.csv", dec=',', sep=';', row.names=FALSE)