library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 90491 <- sunrise.set(49.4254092,11.079655300000013, "2023/01/01", timezone="MET", num.days=370) sunrise <- 90491$sunrise sunset <- 90491$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 90491["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 90491["ss"] <- as.POSIXct(sunset, format = "%H:%M") 90491["timestamp"] <- align.time(90491$sunrise, 60*10) 90491 <- 90491[c("timestamp", "sr", "ss")] locsrss <- ggplot(90491, aes(x=90491$timestamp)) + geom_line(aes(y=90491$sr)) + geom_line(aes(y=90491$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 90491 2023", x = "Datum", y = "Zeit") pdf("90491_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="90491_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 90491["Sonnenaufgang"] <- strftime(90491$sr, format="%H:%M") 90491["Sonnenuntergang"] <- strftime(90491$ss, format="%H:%M") write.table(90491, file="90491_SaSu.csv", dec=',', sep=';', row.names=FALSE)