library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 90431 <- sunrise.set(49.4459471,11.026757299999986, "2023/01/01", timezone="MET", num.days=370) sunrise <- 90431$sunrise sunset <- 90431$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 90431["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 90431["ss"] <- as.POSIXct(sunset, format = "%H:%M") 90431["timestamp"] <- align.time(90431$sunrise, 60*10) 90431 <- 90431[c("timestamp", "sr", "ss")] locsrss <- ggplot(90431, aes(x=90431$timestamp)) + geom_line(aes(y=90431$sr)) + geom_line(aes(y=90431$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 90431 2023", x = "Datum", y = "Zeit") pdf("90431_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="90431_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 90431["Sonnenaufgang"] <- strftime(90431$sr, format="%H:%M") 90431["Sonnenuntergang"] <- strftime(90431$ss, format="%H:%M") write.table(90431, file="90431_SaSu.csv", dec=',', sep=';', row.names=FALSE)