library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 88605 <- sunrise.set(47.98527,9.098644, "2023/01/01", timezone="MET", num.days=370) sunrise <- 88605$sunrise sunset <- 88605$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 88605["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 88605["ss"] <- as.POSIXct(sunset, format = "%H:%M") 88605["timestamp"] <- align.time(88605$sunrise, 60*10) 88605 <- 88605[c("timestamp", "sr", "ss")] locsrss <- ggplot(88605, aes(x=88605$timestamp)) + geom_line(aes(y=88605$sr)) + geom_line(aes(y=88605$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 88605 2023", x = "Datum", y = "Zeit") pdf("88605_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="88605_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 88605["Sonnenaufgang"] <- strftime(88605$sr, format="%H:%M") 88605["Sonnenuntergang"] <- strftime(88605$ss, format="%H:%M") write.table(88605, file="88605_SaSu.csv", dec=',', sep=';', row.names=FALSE)