library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 88131 <- sunrise.set(47.56395951534652,9.702901840209961, "2023/01/01", timezone="MET", num.days=370) sunrise <- 88131$sunrise sunset <- 88131$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 88131["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 88131["ss"] <- as.POSIXct(sunset, format = "%H:%M") 88131["timestamp"] <- align.time(88131$sunrise, 60*10) 88131 <- 88131[c("timestamp", "sr", "ss")] locsrss <- ggplot(88131, aes(x=88131$timestamp)) + geom_line(aes(y=88131$sr)) + geom_line(aes(y=88131$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 88131 2023", x = "Datum", y = "Zeit") pdf("88131_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="88131_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 88131["Sonnenaufgang"] <- strftime(88131$sr, format="%H:%M") 88131["Sonnenuntergang"] <- strftime(88131$ss, format="%H:%M") write.table(88131, file="88131_SaSu.csv", dec=',', sep=';', row.names=FALSE)