library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 87700 <- sunrise.set(47.9773581,10.1763495, "2024/01/01", timezone="MET", num.days=370) sunrise <- 87700$sunrise sunset <- 87700$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 87700["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 87700["ss"] <- as.POSIXct(sunset, format = "%H:%M") 87700["timestamp"] <- align.time(87700$sunrise, 60*10) 87700 <- 87700[c("timestamp", "sr", "ss")] locsrss <- ggplot(87700, aes(x=87700$timestamp)) + geom_line(aes(y=87700$sr)) + geom_line(aes(y=87700$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 87700 2024", x = "Datum", y = "Zeit") pdf("87700_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="87700_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 87700["Sonnenaufgang"] <- strftime(87700$sr, format="%H:%M") 87700["Sonnenuntergang"] <- strftime(87700$ss, format="%H:%M") write.table(87700, file="87700_SaSu.csv", dec=',', sep=';', row.names=FALSE)