library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 86860 <- sunrise.set(47.9941857,10.702901, "2023/01/01", timezone="MET", num.days=370) sunrise <- 86860$sunrise sunset <- 86860$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 86860["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 86860["ss"] <- as.POSIXct(sunset, format = "%H:%M") 86860["timestamp"] <- align.time(86860$sunrise, 60*10) 86860 <- 86860[c("timestamp", "sr", "ss")] locsrss <- ggplot(86860, aes(x=86860$timestamp)) + geom_line(aes(y=86860$sr)) + geom_line(aes(y=86860$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 86860 2023", x = "Datum", y = "Zeit") pdf("86860_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="86860_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 86860["Sonnenaufgang"] <- strftime(86860$sr, format="%H:%M") 86860["Sonnenuntergang"] <- strftime(86860$ss, format="%H:%M") write.table(86860, file="86860_SaSu.csv", dec=',', sep=';', row.names=FALSE)