library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 86609 <- sunrise.set(48.719501,10.768382, "2023/01/01", timezone="MET", num.days=370) sunrise <- 86609$sunrise sunset <- 86609$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 86609["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 86609["ss"] <- as.POSIXct(sunset, format = "%H:%M") 86609["timestamp"] <- align.time(86609$sunrise, 60*10) 86609 <- 86609[c("timestamp", "sr", "ss")] locsrss <- ggplot(86609, aes(x=86609$timestamp)) + geom_line(aes(y=86609$sr)) + geom_line(aes(y=86609$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 86609 2023", x = "Datum", y = "Zeit") pdf("86609_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="86609_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 86609["Sonnenaufgang"] <- strftime(86609$sr, format="%H:%M") 86609["Sonnenuntergang"] <- strftime(86609$ss, format="%H:%M") write.table(86609, file="86609_SaSu.csv", dec=',', sep=';', row.names=FALSE)