library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 86473 <- sunrise.set(48.28787619074567,10.532369613647461, "2023/01/01", timezone="MET", num.days=370) sunrise <- 86473$sunrise sunset <- 86473$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 86473["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 86473["ss"] <- as.POSIXct(sunset, format = "%H:%M") 86473["timestamp"] <- align.time(86473$sunrise, 60*10) 86473 <- 86473[c("timestamp", "sr", "ss")] locsrss <- ggplot(86473, aes(x=86473$timestamp)) + geom_line(aes(y=86473$sr)) + geom_line(aes(y=86473$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 86473 2023", x = "Datum", y = "Zeit") pdf("86473_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="86473_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 86473["Sonnenaufgang"] <- strftime(86473$sr, format="%H:%M") 86473["Sonnenuntergang"] <- strftime(86473$ss, format="%H:%M") write.table(86473, file="86473_SaSu.csv", dec=',', sep=';', row.names=FALSE)