library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 86179 <- sunrise.set(48.29370115383244,10.891313552856445, "2023/01/01", timezone="MET", num.days=370) sunrise <- 86179$sunrise sunset <- 86179$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 86179["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 86179["ss"] <- as.POSIXct(sunset, format = "%H:%M") 86179["timestamp"] <- align.time(86179$sunrise, 60*10) 86179 <- 86179[c("timestamp", "sr", "ss")] locsrss <- ggplot(86179, aes(x=86179$timestamp)) + geom_line(aes(y=86179$sr)) + geom_line(aes(y=86179$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 86179 2023", x = "Datum", y = "Zeit") pdf("86179_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="86179_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 86179["Sonnenaufgang"] <- strftime(86179$sr, format="%H:%M") 86179["Sonnenuntergang"] <- strftime(86179$ss, format="%H:%M") write.table(86179, file="86179_SaSu.csv", dec=',', sep=';', row.names=FALSE)