library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 83376 <- sunrise.set(47.9611706,12.500551200000018, "2023/01/01", timezone="MET", num.days=370) sunrise <- 83376$sunrise sunset <- 83376$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 83376["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 83376["ss"] <- as.POSIXct(sunset, format = "%H:%M") 83376["timestamp"] <- align.time(83376$sunrise, 60*10) 83376 <- 83376[c("timestamp", "sr", "ss")] locsrss <- ggplot(83376, aes(x=83376$timestamp)) + geom_line(aes(y=83376$sr)) + geom_line(aes(y=83376$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 83376 2023", x = "Datum", y = "Zeit") pdf("83376_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="83376_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 83376["Sonnenaufgang"] <- strftime(83376$sr, format="%H:%M") 83376["Sonnenuntergang"] <- strftime(83376$ss, format="%H:%M") write.table(83376, file="83376_SaSu.csv", dec=',', sep=';', row.names=FALSE)