library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 83109 <- sunrise.set(47.90014621531362,12.082085609436035, "2023/01/01", timezone="MET", num.days=370) sunrise <- 83109$sunrise sunset <- 83109$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 83109["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 83109["ss"] <- as.POSIXct(sunset, format = "%H:%M") 83109["timestamp"] <- align.time(83109$sunrise, 60*10) 83109 <- 83109[c("timestamp", "sr", "ss")] locsrss <- ggplot(83109, aes(x=83109$timestamp)) + geom_line(aes(y=83109$sr)) + geom_line(aes(y=83109$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 83109 2023", x = "Datum", y = "Zeit") pdf("83109_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="83109_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 83109["Sonnenaufgang"] <- strftime(83109$sr, format="%H:%M") 83109["Sonnenuntergang"] <- strftime(83109$ss, format="%H:%M") write.table(83109, file="83109_SaSu.csv", dec=',', sep=';', row.names=FALSE)