library(lubridate) library(ggplot2) library(StreamMetabolism) library(xts) library(reshape) library(scales) 82387 <- sunrise.set(47.750657195662185,11.302158236503601, "2024/01/01", timezone="MET", num.days=370) sunrise <- 82387$sunrise sunset <- 82387$sunset sunrise <- strftime(sunrise, format="%R", tz="MET") sunset <- strftime(sunset, format="%R", tz="MET") 82387["sr"] <- as.POSIXct(sunrise, format = "%H:%M") 82387["ss"] <- as.POSIXct(sunset, format = "%H:%M") 82387["timestamp"] <- align.time(82387$sunrise, 60*10) 82387 <- 82387[c("timestamp", "sr", "ss")] locsrss <- ggplot(82387, aes(x=82387$timestamp)) + geom_line(aes(y=82387$sr)) + geom_line(aes(y=82387$ss)) + labs(title = " Sonnenauf-/Sonnenuntergang - 82387 2024", x = "Datum", y = "Zeit") pdf("82387_SA_SU.pdf", paper="a4r", width=11) locsrss dev.off() png(filename="82387_SA_SU.png", width = 1400, height = 800, units = "px") locsrss dev.off() 82387["Sonnenaufgang"] <- strftime(82387$sr, format="%H:%M") 82387["Sonnenuntergang"] <- strftime(82387$ss, format="%H:%M") write.table(82387, file="82387_SaSu.csv", dec=',', sep=';', row.names=FALSE)